
[ad_1]
import tensorflow as tf
from tensorflow.keras.fashions import Sequential
from tensorflow.keras.layers import Dense, Dropout, LSTM
from sklearn.preprocessing import MinMaxScaler
import numpy as np
# Load and preprocess information
# …
# Construct the neural community
mannequin = Sequential()
mannequin.add(LSTM(50, return_sequences=True, input_shape=(X_train.form[1], 1)))
mannequin.add(LSTM(50, return_sequences=False))
mannequin.add(Dense(25))
mannequin.add(Dense(1))
# Compile the mannequin
mannequin.compile(optimizer=”adam”, loss=”mean_squared_error”)
# Prepare the mannequin
mannequin.match(X_train, y_train, batch_size=1, epochs=1)
# Make predictions utilizing the neural community
predictions = mannequin.predict(X_test)
predictions = scaler.inverse_transform(predictions)
# Apply Value Motion technique
# …
# Pseudocode instance for implementing the Value Motion technique
def apply_price_action_strategy(information):
# Value Motion technique logic
# …
# Combine the technique with predictions
combined_strategy = apply_price_action_strategy(predictions)
Conclusion:
Skyrocket is a buying and selling professional that efficiently combines the Value Motion technique with neural networks, avoiding overfitting and guaranteeing stability within the dynamics of monetary markets. The mix of exact Value Motion evaluation and the flexibleness of neural community studying makes Skyrocket a robust device for merchants searching for efficient portfolio administration.
[ad_2]
Supply hyperlink